What is AI (Artificial Intelligence)?

Artificial intelligence is a machine’s ability to perform some cognitive functions we usually associate with human minds.

Twentieth-century theoreticians, like computer scientist and mathematician Alan Turing, envisioned a future where machines could perform functions faster than humans. The work of Turing and others soon made this a reality. Personal calculators became widely available in the 1970s, and by 2016, the US census showed that 89 percent of American households had a computer. Machines—smart machines at that—are now just an ordinary part of our lives and culture.

Those smart machines are also getting faster and more complex. Some computers have now crossed the exascale threshold, meaning they can perform as many calculations in a single second as an individual could in 31,688,765,000 years. And beyond computation, which machines have long been faster at than we have, computers and other devices are now acquiring skills and perception that were once unique to humans and a few other species.

AI is a machine’s ability to perform the cognitive functions we associate with human minds, such as perceiving, reasoning, learning, interacting with the environment, problem-solving, and even exercising creativity. You’ve probably interacted with AI even if you don’t realize it—voice assistants like Siri and Alexa are founded on AI technology, as are some customer service chatbots that pop up to help you navigate websites...

What is machine learning?

Machine learning is a form of artificial intelligence that can adapt to a wide range of inputs, including large sets of historical data, synthesized data, or human inputs. (Some machine learning algorithms are specialized in training themselves to detect patterns; this is called deep learning. See Exhibit 1.) These algorithms can detect patterns and learn how to make predictions and recommendations by processing data, rather than by receiving explicit programming instruction. Some algorithms can also adapt in response to new data and experiences to improve over time.

Exhibit 1

The volume and complexity of data that is now being generated, too vast for humans to process and apply efficiently, has increased the potential of machine learning, as well as the need for it. In the years since its widespread deployment, which began in the 1970s, machine learning has had an impact on a number of industries, including achievements in medical-imaging analysis and high-resolution weather forecasting…

What is deep learning?

Deep learning is a more advanced version of machine learning that is particularly adept at processing a wider range of data resources (text as well as unstructured data including images), requires even less human intervention, and can often produce more accurate results than traditional machine learning. Deep learning uses neural networks—based on the ways neurons interact in the human brain—to ingest data and process it through multiple neuron layers that recognize increasingly complex features of the data. For example, an early layer might recognize something as being in a specific shape; building on this knowledge, a later layer might be able to identify the shape as a stop sign. Similar to machine learning, deep learning uses iteration to self-correct and improve its prediction capabilities. For example, once it “learns” what a stop sign looks like, it can recognize a stop sign in a new image…

What is generative AI?

Generative AI (gen AI) is an AI model that generates content in response to a prompt. It’s clear that generative AI tools like ChatGPT and DALL-E (a tool for AI-generated art) have the potential to change how a range of jobs are performed…

Read the whole article here.