# Imaginary Numbers Are Real

*Since ancient times, mathematicians have known that other types of numbers also exist. Now physicists are proving that they describe the hidden (fundamental) shape of nature*.

**Karmela Padavic-Callaghani in Aeon:** Many science students may imagine a ball rolling down a hill or a car skidding because of friction as prototypical examples of the systems physicists care about. But much of modern physics consists of searching for objects and phenomena that are virtually invisible: the tiny electrons of quantum physics and the particles hidden within strange metals of materials science along with their highly energetic counterparts that only exist briefly within giant particle colliders.

In their quest to grasp these hidden building blocks of reality scientists have looked to mathematical theories and formalism. Ideally, an unexpected experimental observation leads a physicist to a new mathematical theory, and then mathematical work on said theory leads them to new experiments and new observations. Some part of this process inevitably happens in the physicist’s mind, where symbols and numbers help make invisible theoretical ideas visible in the tangible, measurable physical world.

Sometimes, however, as in the case of imaginary numbers – that is, numbers with negative square values – mathematics manages to stay ahead of experiments for a long time. Though imaginary numbers have been integral to quantum theory since its very beginnings in the 1920s, scientists have only recently been able to find their physical signatures in experiments and empirically prove their necessity.

In December of 2021 and January of 2022, two teams of physicists, one an international collaboration including researchers from the Institute for Quantum Optics and Quantum Information in Vienna and the Southern University of Science and Technology in China, and the other led by scientists at the University of Science and Technology of China (USTC), showed that a version of quantum mechanics devoid of imaginary numbers leads to a faulty description of nature. A month earlier, researchers at the University of California, Santa Barbara reconstructed a quantum wave function, another quantity that cannot be fully described by real numbers, from experimental data. In either case, physicists cajoled the very real world they study to reveal properties once so invisible as to be dubbed imaginary.

For most people the idea of a number has an association with counting. The number five may remind someone of fingers on their hand, which children often use as a counting aid, while 12 may make you think of buying eggs. For decades, scientists have held that some animals use numbers as well, exactly because many species, such as chimpanzees or dolphins, perform well in experiments that require them to count.

Counting has its limits: it only allows us to formulate so-called natural numbers. But, since ancient times, mathematicians have known that other types of numbers also exist. Rational numbers, for instance, are equivalent to fractions, familiar to us from cutting cakes at birthday parties or divvying up the check after dinner at a fancy restaurant. Irrational numbers are equivalent to decimal numbers with no periodically repeating digits. They are often obtained by taking the square root of some natural numbers. While writing down infinitely many digits of a decimal number or taking a square root of a natural number, such as five, seems less real than cutting a pizza pie into eighths or 12ths, some irrational numbers, such as pi, can still be matched to a concrete visual. Pi is equal to the ratio of a circle’s circumference and the diameter of the same circle. In other words, if you counted how many steps it takes you to walk in a circle and come back to where you started, then divided that by the number of steps you’d have to take to make it from one point on the circle to the opposite point in a straight line passing through the center, you’d come up with the value of pi. This example may seem contrived, but measuring lengths or volumes of common objects also typically produces irrational numbers; nature rarely serves us up with perfect integers or exact fractions. Consequently, rational and irrational numbers are collectively referred to as ‘real numbers’.

**Imaginary numbers went from a problem seeking a solution to a solution that had just been matched with its problem**

Negative numbers can also seem tricky: for instance, there is no such thing as ‘negative three eggs’. At the same time, if we think of them as capturing the opposite or inverse of some quantity, the physical world once again offers up examples. Negative and positive electric charges correspond to unambiguous, measurable behavior. In the centigrade scale, we can see the difference between negative and positive temperature since the latter corresponds to ice rather than liquid water. Across the board then, with positive and negative real numbers, we are able to claim that numbers are symbols that simply help us keep track of well-defined, visible physical properties of nature. For hundreds of years, it was essentially impossible to make the same claim about imaginary numbers.

In their simplest mathematical formulation, imaginary numbers are square roots of negative numbers. This definition immediately leads to questioning their physical relevance: if it takes us an extra step to work out what negative numbers mean in the real world, how could we possibly visualize something that stays negative when multiplied by itself? Consider, for example, the number +4. It can be obtained by squaring either 2 or its negative counterpart -2. How could -4 ever be a square when 2 and -2 were both already determined to produce 4 when squared? Imaginary numbers offer a resolution by introducing the so-called imaginary unit *i*, which is the square root of -1. Now, -4 is the square of 2*i* or -2*i*, emulating the properties of +4. In this way, imaginary numbers are like a mirror image of real numbers: attaching *i* to any real number allows it to produce a square exactly the opposite of the one it was generating before.

Western mathematicians started grappling with imaginary numbers in earnest in the 1520s when Scipione del Ferro, a professor at the University of Bologna in Italy, set out to solve the so-called cubic equation. One version of the challenge, later referred to as the irreducible case, required taking the square root of a negative number. Going further, in his book Ars Magna (1545), meant to summarize all of algebraic knowledge of the time, the Italian astronomer Girolamo Cardano declared this variety of the cubic equation to be impossible to solve.

Almost 30 years later, another Italian scholar, Rafael Bombelli, introduced the imaginary unit i more formally. He referred to it as più di meno, or ‘more of the less’, a paradoxical phrase in itself. Calling these numbers imaginary came later, in the 1600s, when the philosopher René Descartes argued that, in geometry, any structure corresponding to imaginary numbers must be impossible to visualize or draw. By the 1800s, thinkers such as Carl Friedrich Gauss and Leonhard Euler included imaginary numbers in their studies. They discussed complex numbers made up of a real number added to an imaginary number, such as 3+4*i*, and found that complex-valued mathematical functions have different properties than those that only produce real numbers.

Yet, they still had misgivings about the philosophical implications of such functions existing at all. The French mathematician Augustin-Louis Cauchy wrote that he was ‘abandoning’ the imaginary unit ‘without regret because we do not know what this alleged symbolism signifies nor what meaning to give to it.’

In physics, however, the oddness of imaginary numbers was disregarded in favor of their usefulness. For instance, imaginary numbers can be used to describe opposition to changes in current within an electrical circuit. They are also used to model some oscillations, such as those found in grandfather clocks, where pendulums swing back and forth despite friction. Imaginary numbers are necessary in many equations pertaining to waves, be they vibrations of a plucked guitar string or undulations of water along a coast. And these numbers hide within mathematical functions of sine and cosine, familiar to many high-school trigonometry students.

At the same time, in all these cases imaginary numbers are used as more of a bookkeeping device than a stand-in for some fundamental part of physical reality. Measurement devices such as clocks or scales have never been known to display imaginary values. Physicists typically separate equations that contain imaginary numbers from those that do not. Then, they draw some set of conclusions from each, treating the infamous i as no more than an index or an extra label that helps organize this deductive process. Unless the physicist in question is confronted with the tiny and cold world of quantum mechanics.

Quantum theory predicts the physical behavior of objects that are either very small, such as electrons that make up electric currents in every wire in your home, or millions of times colder than the insides of your fridge. And it is chock-full of complex and imaginary numbers.

Emerging in the 1920s, only about a decade after Albert Einstein’s paradigm-shifting work on general relativity and the nature of spacetime, quantum mechanics complicated almost everything that physicists thought they knew about using mathematics to describe physical reality. One big upset was the proposition that quantum states, the fundamental way in which objects that behave according to the laws of quantum mechanics are described, are by default complex. In other words, the most generic, most basic description of anything quantum includes imaginary numbers. *More here.*